Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

Identifieur interne : 002982 ( Main/Exploration ); précédent : 002981; suivant : 002983

Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.

Auteurs : Renata Bura [États-Unis] ; Azra Vajzovic ; Sharon L. Doty

Source :

RBID : pubmed:22399239

Descripteurs français

English descriptors

Abstract

An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.

DOI: 10.1007/s10295-012-1109-x
PubMed: 22399239


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.</title>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195-2100, USA. renatab@u.washington.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vajzovic, Azra" sort="Vajzovic, Azra" uniqKey="Vajzovic A" first="Azra" last="Vajzovic">Azra Vajzovic</name>
</author>
<author>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22399239</idno>
<idno type="pmid">22399239</idno>
<idno type="doi">10.1007/s10295-012-1109-x</idno>
<idno type="wicri:Area/Main/Corpus">002B11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B11</idno>
<idno type="wicri:Area/Main/Curation">002B11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B11</idno>
<idno type="wicri:Area/Main/Exploration">002B11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.</title>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195-2100, USA. renatab@u.washington.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195-2100</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vajzovic, Azra" sort="Vajzovic, Azra" uniqKey="Vajzovic A" first="Azra" last="Vajzovic">Azra Vajzovic</name>
</author>
<author>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
</author>
</analytic>
<series>
<title level="j">Journal of industrial microbiology & biotechnology</title>
<idno type="eISSN">1476-5535</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ethanol (metabolism)</term>
<term>Fermentation (MeSH)</term>
<term>Galactose (metabolism)</term>
<term>Industrial Microbiology (MeSH)</term>
<term>Mannose (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Rhodotorula (classification)</term>
<term>Rhodotorula (isolation & purification)</term>
<term>Rhodotorula (metabolism)</term>
<term>Sugar Alcohols (metabolism)</term>
<term>Wood (metabolism)</term>
<term>Wood (microbiology)</term>
<term>Xylitol (biosynthesis)</term>
<term>Xylitol (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (microbiologie)</term>
<term>Bois (métabolisme)</term>
<term>Fermentation (MeSH)</term>
<term>Galactose (métabolisme)</term>
<term>Mannose (métabolisme)</term>
<term>Microbiologie industrielle (MeSH)</term>
<term>Polyols (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Rhodotorula (classification)</term>
<term>Rhodotorula (isolement et purification)</term>
<term>Rhodotorula (métabolisme)</term>
<term>Xylitol (biosynthèse)</term>
<term>Xylitol (métabolisme)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Xylitol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ethanol</term>
<term>Galactose</term>
<term>Mannose</term>
<term>Sugar Alcohols</term>
<term>Xylitol</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Xylitol</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Rhodotorula</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Rhodotorula</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Rhodotorula</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Rhodotorula</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Galactose</term>
<term>Mannose</term>
<term>Polyols</term>
<term>Rhodotorula</term>
<term>Xylitol</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fermentation</term>
<term>Industrial Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fermentation</term>
<term>Microbiologie industrielle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">22399239</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-5535</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>39</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of industrial microbiology & biotechnology</Title>
<ISOAbbreviation>J Ind Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.</ArticleTitle>
<Pagination>
<MedlinePgn>1003-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10295-012-1109-x</ELocationID>
<Abstract>
<AbstractText>An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bura</LastName>
<ForeName>Renata</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195-2100, USA. renatab@u.washington.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vajzovic</LastName>
<ForeName>Azra</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doty</LastName>
<ForeName>Sharon L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Ind Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>9705544</NlmUniqueID>
<ISSNLinking>1367-5435</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013402">Sugar Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PHA4727WTP</RegistryNumber>
<NameOfSubstance UI="D008358">Mannose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VCQ006KQ1E</RegistryNumber>
<NameOfSubstance UI="D014993">Xylitol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X2RN3Q8DNE</RegistryNumber>
<NameOfSubstance UI="D005690">Galactose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YFV05Y57M9</RegistryNumber>
<NameOfSubstance UI="C014999">arabitol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005690" MajorTopicYN="N">Galactose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007218" MajorTopicYN="Y">Industrial Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008358" MajorTopicYN="N">Mannose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012248" MajorTopicYN="N">Rhodotorula</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013402" MajorTopicYN="N">Sugar Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014993" MajorTopicYN="N">Xylitol</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22399239</ArticleId>
<ArticleId IdType="doi">10.1007/s10295-012-1109-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Jan;54(1):50-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(20):7988-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2004 Jun;31(5):235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2006 Jan;101(1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Sep;113(Pt 9):973-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2006 Oct;97(15):1974-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2002 May;83(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12058826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Oct;61(10):3604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7486996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Feb;74(2):273-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2004 May;93(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14987714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Jun 1;206(2):297-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1597176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Dec;53(12):2831-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol Sci. 2010 Aug;9(8):1145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2004 Spring;113-116:1059-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Feb;74(2):277-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Feb;102(3):2651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Aug;59(4-5):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
<name sortKey="Vajzovic, Azra" sort="Vajzovic, Azra" uniqKey="Vajzovic A" first="Azra" last="Vajzovic">Azra Vajzovic</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002982 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002982 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22399239
   |texte=   Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22399239" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020